Background adenosquamous carcinoma (ADSQ) of non-small cell lung cancer (NSCLC) is

Background adenosquamous carcinoma (ADSQ) of non-small cell lung cancer (NSCLC) is a rare disease and the biological behavior and clinicopathological characteristics have not yet been thoroughly described. and lymph node metastases than adenocarcinoma (AD). The proportion with coexistent double cancer of AD, SQ, and ADSQ were 21.1, 17.6, and 45.5%, respectively. ADSQ had a significantly correlation with double cancer (ADSQ vs. non- ADSQ p = 0.03). A multivariate analysis showed no significant prognostic difference between the patients with ADSQ and non- ADSQ. Conclusions In this study, cases with ADSQ showed no significantly prognostic difference in comparison to AD and SQ. However, surgeons must be cautious of any coexistent double cancer because approximately half of all patients with ADSQ of the lung have double cancer. Introduction Lung cancer remains the most common cause of cancer death worldwide [1]. DL-Menthol Despite recent improvements in diagnostic technologies, more than 50% of patients present locally advanced or distant metastatic disease, and the prognosis still remains unsatisfactory [2,3]. One reason for this is that the specific characterization of phenotype according to the pathological diagnosis has not been clarified, especially with regard to minor phenotypes, such as ADSQ [4] and large cell neuroendocrine carcinoma [5]. There are few reports of the clinical significance of ADSQ [6-9]. The effectiveness of surgical resection of ADSQ of the lung remains poorly defined because of the relatively low frequency of this type of tumor [6,7]. Shimizu. et al. reported that the survival rates for patients with ADSQ were statistically worse DL-Menthol than for patients with SQ and AD, due to the highly aggressive pathological stage of ADSQ [7]. On the other hand, Hsia et al. reported that the prognostic behavior of ADSQ had no influence on survival in comparison to the survival curves with those for SQ and AD [4] consistent with previous reports [8,9]. Therefore, the prognostic impact of ADSQ in lung cancer still remains controversial. Furthermore, no series has addressed the correlation between the ADSQ and coexistent double cancer. This study retrospectively reviewed cases a 13-year period to clarify the correlation between the ADSQ and clinicopathological factors including coexistent double cancer and to elucidate the prognostic significance of ADSQ of the lung in comparison to the AD and SQ. Materials and methods Patients and methods The characteristics and clinicopathological factors were evaluated retrospectively. Seven hundred and seventy-nine patients with primary lung cancer underwent a surgical resection between April 1994 to March 2006 at the Second Department of Surgery at University of Occupational and Environmental Health, Kitakyushu, Japan. Of these, 403, 187, 39, 24, 11, 125, and 10 patients were diagnosed as AD, DL-Menthol SQ, large cell carcinoma, small cell carcinoma, ADSQ, multiple primary lung cancer (MPLC), and others, respectively. According to the established criteria, on routine microscopic examination using hematoxylin and eosin staining, a sample from a tumor containing at least 20% each of AD and SQ is classified Rabbit polyclonal to ZNF76.ZNF76, also known as ZNF523 or Zfp523, is a transcriptional repressor expressed in the testis. Itis the human homolog of the Xenopus Staf protein (selenocysteine tRNA genetranscription-activating factor) known to regulate the genes encoding small nuclear RNA andselenocysteine tRNA. ZNF76 localizes to the nucleus and exerts an inhibitory function onp53-mediated transactivation. ZNF76 specifically targets TFIID (TATA-binding protein). Theinteraction with TFIID occurs through both its N and C termini. The transcriptional repressionactivity of ZNF76 is predominantly regulated by lysine modifications, acetylation and sumoylation.ZNF76 is sumoylated by PIAS 1 and is acetylated by p300. Acetylation leads to the loss ofsumoylation and a weakened TFIID interaction. ZNF76 can be deacetylated by HDAC1. In additionto lysine modifications, ZNF76 activity is also controlled by splice variants. Two isoforms exist dueto alternative splicing. These isoforms vary in their ability to interact with TFIID as ADSQ [10]. Specimens from each of these patients were reviewed critically by one (S.Y.) pathologist. This study evaluated 11 cases (1.6%) with ADSQ among 779 resected primary lung cancers. The characteristics of the patients with ADSQ are shown in Table ?Table1.1. They included 6 males and 5 females with a mean age of 67.3 years, ranging in age from 48 to 79 years. Of these eleven patients, all had undergone complete resections, and six were N0 cases. The pathological stages of the cancer were stage IA in 3 patients, IB in 1, IIA in 1, IIIA in 5, IIIB in 1, according to the TNM classification revised by the International union Against Cancer [11]. Patients were followed up with clinical assessments, chest X-rays, and tumor marker every month during the first year and every 3 months thereafter after operation. Computed tomography, bone scintigram and brain magnetic resonance imaging were all performed every 6 months. The mean observation period was 46.1 months. Table 1 Characteristics of the patients with DL-Menthol ADSQ Statistical analysis Statistical analyses were performed using the Stat view 5.0 software program for Windows (Abacus Concepts, Inc., California). The chi-square test was used to assess the relationship between ADSQ and each of the clinicopathological features. In the prognostic analysis, the Kaplan-Meier method was used to estimate the probability of survival, and survival differences were analyzed by the log-rank test..