Data Availability StatementAll relevant data are within the paper

Data Availability StatementAll relevant data are within the paper. of the SV40 microRNA-null mutant persisted at higher levels than the DNA of wild-type viruses. Complex viral regulatory regions produced modestly higher DNA levels than simple regulatory regions. Viral large T-antigen protein was detected at low frequency and at low levels in infected B cells. Following infection of primary lymphocytes, SV40 DNA was detected in CD19+ UK 5099 B cells and CD14+ monocytes, but not in CD3+ T cells. Rescue attempts using either lysates of SV40-infected B lymphocytes, coculture of live cells, or infectious center assays all showed that replication-competent SV40 could be recovered on rare occasions. SV40 infections altered the expression of several B cell surface markers, with more pronounced changes following infections with the microRNA-null mutant. Conclusion These findings indicate that SV40 can establish persistent infections in human B lymphocytes. The cells retain low copy numbers of viral DNA; the infections are nonproductive and noncytolytic but can occasionally produce infectious virus. SV40 microRNA negatively regulates the degree of viral effects on B cells. Significance Lymphocytes may serve as viral reservoirs and may function to disseminate polyomaviruses to different tissues in a host. To our knowledge, this report is the first extensive analysis of viral microRNA effects on SV40 infection of human lymphocytes. Introduction The polyomavirus family is rapidly expanding [1,2]. However, the pathogenesis of infections by polyomaviruses in susceptible hosts and how those infections may lead to disease (usually in the immunocompromised) are not well-understood. Polyomaviruses are known to establish persistent infections in hosts, but the breadth of target tissues UK 5099 and the status of virus in those tissues remain obscure [3]. Insights into the nature of viral infection and persistence in different cell types are needed. Lymphocytes are important factors in virusChost interactions for multiple virus families with the precise nature of those interactions differing among virus types. Evidence suggests that polyomaviruses possess lymphotropic properties. Detections of human isolates JC virus (JCV) and BK virus (BKV) in human lymphocytes have been reported for over a decade, including in cells from healthy individuals and from patients with immune deficiencies or progressive multifocal leukoencephalopathy [4C14]. Newer human polyomavirus isolates, MCPyV, KIPyV, WUPyV, TSPyV, HPyV6, HPyV7, MWPyV, and STLPyV also appear to have lymphotropic properties based on detection of viral DNA in lymphoid tissues [15C24], as do lymphotropic papovavirus, LPV, and murine polyoma virus, MuPyV [25C27]. Polyomavirus simian virus 40 (SV40) of rhesus macaque origin is one of the most well-characterized members of the family and the most readily amenable to laboratory studies. Like human polyomaviruses BKV and JCV, SV40 causes a low-grade persistent infection in kidneys in its natural host and shares evidence of lymphotropism. In monkeys infected with simian immunodeficiency virus, SV40 coinfection becomes widespread with virus detected in the brain, Rabbit Polyclonal to ZC3H11A lung, kidney, lymph node, spleen and peripheral blood [28C30]. This dissemination likely occurs via hematogenous spread of the virus. SV40 can infect human cells in culture and SV40 DNA has been detected in tonsils and peripheral blood lymphocytes of healthy human donors [31C39]. The goal of this study was to characterize the nature of interactions between polyomavirus SV40 and human lymphoid cells. Specific objectives included the following: (i) to establish the effects of SV40 microRNA (miRNA) and the structure of the viral regulatory region (RR) on patterns of infection of human lymphocytes, (ii) to identify levels UK 5099 of viral DNA and gene expression in persistently infected cells; and (iii) to determine the effects of viral infections on lymphoid cell properties. We found that SV40 establishes chronic, nonproductive infections in B lymphocytes and in myeloid cells that can occasionally yield infectious virus. This could provide a mechanism for viral retention and dissemination throughout the host UK 5099 and contribute to viral pathogenesis and disease. This UK 5099 SV40 system provides a model for studies of the growing number of newly detected polyomaviruses. Materials and methods Cell lines Human lymphocyte cell line DG75 (ATCC CRL-2625), derived from an Epstein-Barr virus (EBV)-negative primary abdominal B cell lymphoma [40], was obtained from Paul D. Ling (Baylor College of Medicine). Cell lines BJAB.